Activity of neurochemically heterogeneous dopaminergic neurons in the substantia nigra during spontaneous and driven changes in brain state.
نویسندگان
چکیده
Dopaminergic neurons of the substantia nigra (SN) and ventral tegmental area (VTA) are collectively implicated in motor- and reward-related behaviors. However, dopaminergic SN and VTA neurons differ on several functional levels, and dopaminergic SN neurons themselves vary in their intrinsic electrical properties, neurochemical characteristics and connections. This heterogeneity is not only important for normal function; calbindin (CB) expression by some dopaminergic SN neurons has been linked with their increased survival in Parkinson's disease. To test whether the activity of CB-negative and CB-positive dopaminergic SN neurons differs during distinct spontaneous and driven brain states, we recorded single units in anesthetized rats before, during and after aversive somatosensory stimuli. Recorded neurons were juxtacellularly labeled, confirmed to be dopaminergic, and tested for CB immunoreactivity. During cortical slow-wave activity, the firing of most dopaminergic neurons was slow and regular/irregular and unrelated to cortical slow oscillations. During spontaneous cortical activation, dopaminergic SN neurons fired in a more regular manner, with fewer bursts, but did not change their firing rate. Regardless of brain state, CB-negative dopaminergic neurons fired significantly faster than CB-positive dopaminergic neurons. This difference in firing rate was not mirrored by different firing patterns. Most CB-negative and CB-positive dopaminergic neurons did not respond to the aversive stimuli; of those that did respond, most were inhibited. We conclude that CB-negative and CB-positive dopaminergic neurons exhibit different activities in vivo. Furthermore, the firing of dopaminergic SN neurons is brain state-dependent, and, unlike dopaminergic VTA neurons, they are not commonly recruited or inhibited by aversive stimuli.
منابع مشابه
Cinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کاملIrisin protect the Dopaminergic neurons of the Substantia nigra in the rat model of Parkinson’s disease
Objective(s): Exercise ameliorates the quality of life and reduces the risk of neurological derangements such as Alzheimer’s (AD) and Parkinson’s disease (PD). Irisin is a product of the physical activity and is a circulating hormone that regulates the energy metabolism in the body. In the nervous system, Irisin influences neurogenesis and neural differentiation in mic...
متن کاملThe effects of aqueous cinnamon bark extract and cinnamaldehyde on neurons of substantia nigra and behavioral impairment in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in substantia nigra. In recent years, there have been interests in the role of the free radical damage in PD. Cinnamon and its derivative, cinnamaldehyde acts as powerful antioxidant and anti-inflammatory agents. This research focused on the effects of cinnamon extract and cinnamald...
متن کاملThe effect of simvastatin in prevention of histological changes of substantia nigra and behavioral abnormalities in an experimental model of Parkinson’s disease in rat
Background and Objective: Parkinson’s disease (PD) is a rather common neurological disorder in elders that is due to degeneration of dopaminergic neurons within mesencephalic substantia nigra pars compacta. With regard to protective and antioxidant effect of simvastatin, this study was conducted to evaluate its neuroprotective effect in an experimental model of PD. Materials and Methods: In thi...
متن کاملAntioxidant Role of Oleuropein on Midbrain and Dopaminergic Neurons of Substantia Nigra in Aged Rats
Background: Oleuropein is a phenolic compound which is present in the olive leaf extract. The purpose of the present study was to investigate the neuroprotective effect of oleuropein as an antioxidant agent on the substantia nigra in aged rats. Methods: Twenty 18-month-old Wistar rats (450-550 g) were randomly divided into control and experimental groups. The experimental group received a daily...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 9 شماره
صفحات -
تاریخ انتشار 2009